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Abstract. Clustering is a well established data analysis methodology
that has been extensively used in various fields of applications during
the last decades. The main focus of the present thesis is on a well-known
cost-function optimization-based family of clustering algorithms, called
Possibilistic C-Means (PCM) algorithms. Specifically, the shortcomings
of PCM algorithms are exposed and novel batch and online PCM schemes
are proposed to cope with them. These schemes rely on (i) the adapta-
tion of certain parameters which remain fixed during the execution of
the original PCMs and (ii) the adoption of sparsity. The incorporation
of these two characteristics renders the proposed schemes: (a) capable,
in principle, to reveal the true number of physical clusters formed by the
data, (b) capable to uncover the underlying clustering structure even in
demanding cases, where the physical clusters are closely located to each
other and/or have significant differences in their variances and/or densi-
ties, and (c) immune to the presence of noise and outliers. Moreover, the-
oretical results concerning the convergence of the proposed algorithms,
also applicable to the classical PCMs, are provided. The potential of
the proposed methods is demonstrated via extensive experimentation on
both synthetic and real data sets. In addition, they have been success-
fully applied on the challenging problem of clustering in HyperSpectral
Images (HSIs). Finally, a feature selection technique suitable for HSIs
has also been developed.

1 Introduction and Related Work

Clustering is a well established data analysis methodology that lie in the frame-
work of pattern recognition and it has been extensively used in various fields
of applications during the last decades. Given a set of objects, the aim of clus-
tering is the identification of groups (clusters) formed by “similar” objects. A
great amount of work reported in the clustering literature has been devoted to
the identification of compact and hyperellipsoidally shaped clusters. Each such
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cluster is represented by a vector called cluster representative or simply repre-
sentative, which lies in the same l-dimensional space with the data and (ideally)
is located at the center of the cluster.

The most well-known algorithms that deal with this problem, belong to the
family of cost optimization clustering algorithms and are the k-means (hard clus-
tering), e.g. [1], the fuzzy c-means (FCM - fuzzy clustering), e.g. [2], [3] and the
possibilistic c-means (PCM - possibilistic clustering), e.g. [4], [5], [6], [7], [8]. The
main goal of all these algorithms is to move iteratively the representatives to-
wards the centers of the regions that are dense in data points (dense regions),
that is, to regions where significant aggregations of data points (clusters) ex-
ist. Under this perspective, we say that each such vector represents a cluster,
while their movement towards the centers of the clusters is carried out via the
minimization of appropriately defined cost functions.

Let us consider first the k-means and FCM, which share some significant
features. First of all, they both require prior knowledge of the exact number of
clusters m underlying in the data set (which, of course, is rarely known in prac-
tice). In addition, in both schemes the updating equations of the representatives
are interrelated. As a result, these algorithms impose a specific clustering struc-
ture on the data set (rather than uncovering the underlying one), in the sense
that they will return m clusters irrespective of the actual number of physical
clusters existing in the data set. Specifically, if m is less than the actual number
of clusters, at least some representatives will fail to move to dense regions, while
in the opposite case, some naturally formed clusters will split into more than one
pieces1. A common method for estimating m is via the use of suitable validity
indices (e.g., [8]). Finally, as shown in [6], [7], k-means and FCM are vulnerable
to noisy data and outliers.

As far as the PCM algorithms are concerned, the cluster representatives
are updated, based on the degrees of compatibility of the data vectors with the
clusters. In contrast to FCM and k-means, in PCM algorithms, the degrees of
compatibility of a data vector with the various clusters are mutually indepen-
dent. A direct consequence of this fact is that even if the number of clusters is
overestimated, in principle, all representatives will be driven to dense regions,
making thus feasible the uncovering of the actual clusters. However, in this case,
the scenario where two or more cluster representatives are led to the same dense
in data region, may arise, which, however, can be faced after the termination
of the algorithm by seeking for (almost) coincident representatives. In addition,
PCM deals well with noisy data points and outliers, compared to k-means and
FCM. However, it involves additional parameters, usually denoted by γ. Each of
these parameters is associated with a single cluster, while their accurate estima-
tion is of crucial importance. Since, once they have been estimated they are kept
fixed during the execution of the PCM algorithm, it is clear that poor initial
estimates are likely to lead to poor clustering performance, especially in more

1 Of course, if the value of m corresponds to the actual number of physical clusters,
the algorithms have the ability to recover the physical clusters; that is, in this case
“imposition” coincides with “uncovering”.



demanding data sets (e.g. where clusters with significantly different variances
are encountered in the data set).

2 Dissertation Summary

The present thesis focuses on the Possibilistic C-Means (PCM) algorithms. Specif-
ically, exposing first their shortcomings, they are extended next, in order to over-
come them. These extensions rely on the adoption of the parameter adaptivity
and the sparsity concepts. In the sequel, the main contributions of the present
thesis are briefly exposed.

First, a novel approach in the context of possibilistic clustering algorithms,
named Adaptive Possibilistic C-Means (APCM) has been developed [9], [10].
APCM addresses several of the weaknesses of original PCM, by allowing the
adaptation of some parameters that are characteristic to all PCM algorithms,
during its execution. This is in contrast to classical PCM algorithms where these
parameters, once they are set, they remain fixed. This characteristic of APCM
gives rise to two new features that are not met in classical PCM algorithms. The
first one is that APCM is capable, in principle, to reveal the true number of phys-
ical clusters, provided that it starts with a reasonable overestimate of it, thus
overcoming a long-standing issue in the clustering literature. This is carried out
by removing the clusters that gradually become obsolete (i.e., the clusters whose
characteristic parameter diminishes towards zero as the algorithm evolves). The
other feature resulting from the adaptation of the characteristic parameters of
APCM is the increase of its flexibility in following the variations in the for-
mation of the clusters during the algorithm execution. This makes APCM able
to uncover the underlying clustering structure, even in demanding cases, where
the physical clusters are closely located to each other and/or have significant
differences in their variances. APCM is compared against several related state-
of-the-art algorithms through extensive simulations on both synthetic and real
data and the provided results show that APCM exhibits superior performance
in almost all the considered data sets. Moreover, theoretical results that are
indicative of the convergence behavior of the algorithm are also provided.

Next, we extended PCM by introducing the concept of sparsity. The rationale
behind this extension is that, in practice, a data point is most compatible with
at most one, a few or even none cluster (outlier). Thus, taking into account the
data points that are most compatible with a given cluster and excluding those
that are not compatible with it, leads to more accurate estimations of the clus-
ters’ parameters. The resulting algorithm, called Sparse Possibilistic C-Means
(SPCM) [11] can deal well with closely located clusters that may also be of sig-
nificantly different densities, while at the same time it exhibits immunity to noise
and outliers. Finally, a non-trivial convergence proof for the SPCM algorithm is
conducted [12]. The main source of difficulty in the provided convergence anal-
ysis, compared to those given for previous possibilistic algorithms, relies on the
fact that one of its updating parameter equations is not given in closed form
but is computed via a two-branch expression, which defines a non-continuous



mapping. In this thesis, it is shown that SPCM will converge to one of the local
minima of its associated cost function. As a side effect, it is shown that similar
convergence results can be derived for the PCM algorithm, viewed as a special
case of SPCM, which are stronger than those established in previous works.

In the sequel, the main features of the proposed APCM and SPCM algo-
rithms are combined giving rise to the Sparse Adaptive Possibilistic C-Means
(SAPCM) algorithm [13], [11], which, inheriting all the advantages of its an-
cestors, has the ability to (a) cope well with demanding data sets with closely
located physical clusters with possibly different densities and/or variances, (b)
determine the number of physical clusters and (c) improve even more the esti-
mates of the clusters’ parameters, compared to APCM and SPCM. Extensive
experimentation verified the overall advantages of SAPCM compared to other
related algorithms. Moreover, two variants of SAPCM, which use the above orig-
inal SAPCM algorithm as a building block, have been devised. The first one is an
iterative bottom-up version, called Sequential SAPCM (SeqSAPCM) [14], which,
at each iteration, determines a single new cluster by employing SAPCM. Thus,
it unravels sequentially the underlying clustering structure. The basic advantage
of SeqSAPCM is that it does not require knowledge of the number of physical
clusters (not even a crude overestimate, as is the case with APCM, SPCM and
SAPCM). The second variant of SAPCM is called Layered SAPCM (L-SAPCM)
[15] and works in layers. Specifically, the SAPCM algorithm is initially applied in
the whole data set and then it is recursively applied individually on each result-
ing cluster, in order to reveal possible clustering structure within it, working in a
tree structure basis. L-SAPCM terminates when none of the clusters resulting so
far has further clustering structure within it. As is verified by the experimental
results, L-SAPCM can provide accurate clustering even in cases where the data
form closely located clusters at various “resolutions”, i.e. the variances of the
clusters may differ orders of magnitude from each other.

Also, a considerable contribution of this thesis is the development of an online
version of the APCM algorithm, called Online APCM (O-APCM) [16], which
processes data points one by one and memorizes their impact to suitably defined
accumulating variables. O-APCM embodies three new procedures for (a) gener-
ating, (b) merging or (c) deleting clusters dynamically and it is a good candidate
for clustering of big data sets, whose size and dimensionality are prohibitive for
batch algorithms. Finally, it is highlighted that O-APCM may be utilized for
applications in both stationary, as well as dynamically varying environments,
where the physical clusters may change their location in data space over time.
Specifically, O-APCM has the ability to weight more heavily the most recent
data, compared to older data, in the estimation of its parameters. Experimen-
tal results show that O-APCM offers high discrimination ability at a very low
computational cost for data sets in stationary conditions and, additionally, it is
able to track with high accuracy the physical clusters at a non-stationary envi-
ronment. Finally, the application of O-APCM to a real video data set, in order
to identify and track moving objects, highlights its great potential in monitoring
the evolution of dynamically varying phenomena.



The potential of the proposed methods is also demonstrated via experimen-
tation on the basis of three case studies, concerning real hyperspectral images
(HSIs). The images have been collected from different hyperspectral sensors and
depict various land cover cases. The proposed algorithms gave, in general, supe-
rior performance compared to other related algorithms.

Finally, a sparsity-aware feature selection technique suitable for HSIs has
been developed in the frame of the current thesis [17]. The proposed method
is based on the optimization of a sparsity promoting cost-function, in order
to identify the bands with the most significant ability in discriminating the
various homogeneous regions in the HSI under study. Experimental results on
real HSI data have shown remarkable quality of the clustering considering only
the selected bands that result from the above technique.

3 Results and Discussion

In the sequel, we describe in detail one of the proposed possibilistic clustering
algorithms, that is the Sparse Adaptive Possibilistic C-Means (SAPCM), that
incorporates the idea of adaptivity and sparsity.

3.1 Sparse Adaptive Possibilistic C-Means Algorithm

The SAPCM algorithm stems from the optimization of the cost function

J(Θ,U) =

m∑
j=1

[
N∑
i=1

uij∥xi − θj∥2 + γj

N∑
i=1

(uij lnuij − uij)

]
+λ

N∑
i=1

∥ui∥pp (1)

where uij > 0, i = 1, ..., N , j = 1, ...,m, the parameter γj is related to the “size”
of jth cluster, Cj , and it could be described as a measure of its variance around
its θj , and λ is a parameter that controls the degree of the imposed sparsity.

In SAPCM, the parameters γ, after their initialization, are properly adapted
as the algorithm evolves. In particular, the parameter γ of each specific cluster
is updated based only on those data vectors that are “most compatible” with
this cluster. The proposed SAPCM algorithm stems from the optimization of
the cost function of eq. (1), by setting

γj =
η̂

α
ηj (2)

with ηj being a measure of the mean absolute deviation of Cj as it has been
formed in the current iteration, η̂ is a constant defined as the minimum among
all initial ηj ’s, i.e., η̂ = min

j=1,...,mini

ηj , where mini is the initial number of clusters,

and α is a user-defined positive parameter, so that the ration η̂/α approximates
the mean absolute deviation of the smallest physical cluster. Note that although
the latter quantity is fixed for a given data set, it is unknown in practice.

Initialization in SAPCM: First, we make an overestimation, denoted bymini,
of the true number of natural clusters m, formed by the data points; that is, we



begin with mini θj ’s and their corresponding ηj ’s. Regarding θj ’s and ηj ’s, their
initialization drastically affects the final clustering result in SAPCM. Recalling
that SAPCM is a possibilistic-type algorithm and these algorithms move the
cluster representatives towards “dense in data points” regions (physical clusters),
care should be taken so that at least one representative lies “close” to each
physical cluster with its associated ηj being initialized suitably. Thus, a good
starting point for them is of crucial importance. To this end, the initialization of
θj ’s is carried out using the final cluster representatives obtained from the FCM
algorithm, when the latter is run with mini clusters. Taking into account that
FCM is very likely to drive the representatives to dense in data regions (since
mini > m), the probability that at least one of the initial θj ’s is placed in each
dense region (cluster) of the data set, increases with mini.

After the initialization of θj ’s, ηj ’s are initialized as follows:

ηj =

∑N
i=1 u

FCM
ij ∥xi − θj∥∑N
i=1 u

FCM
ij

, j = 1, . . . ,mini, (3)

where θj ’s and uFCM
ij ’s in eq. (3) are the final parameter estimates obtained by

FCM. Combining eqs. (2), (3), the initialization of γj ’s is completely defined.

Parameter adaptation in SAPCM: In SAPCM algorithm, all parameters
are adapted during its execution. More specifically, this refers to, (a) the param-
eters θj ’s, (b) the parameters uij ’s, (c) the number of clusters, m, and (d) the
parameters γj ’s, with (c) and (d) being achieved through two interrelated pro-
cesses. Minimization of J(Θ,U) with respect to θj leads to the same updating
equation as in the original PCM scheme, that is

θj =

∑N
i=1 uijxi∑N
i=1 uij

(4)

Taking the derivative of J(Θ,U) with respect to uij , we obtain

∂J(Θ,U)

∂uij
≡ f(uij) = dij + γj lnuij + λpup−1

ij , (5)

where dij = ∥xi − θj∥2. Obviously, ∂J(Θ,U)
∂uij

= 0 is equivalent to f(uij) = 0, the

solution of which will give the requested uij . Clearly, this equation cannot be
solved analytically. However, it can be efficiently solved arithmetically based on
the following propositions.

Proposition 1 f(uij) does not become zero for uij ∈ (−∞, 0) ∪ (1,+∞) 2.

Proposition 2 The stationary points of f(uij) are ûij =
[

λ
γj
p(1− p)

] 1
1−p

and

ũij = +∞.

2 The proofs of Propositions 1 to 6 are given in the dissertation.



Proposition 3 The unique minimum of f(uij) appears at ûij =
[

λ
γj
p(1− p)

] 1
1−p

.

Proposition 4 If f(ûij) < 0 then f(uij) = 0 has exactly two solutions u
{1}
ij ,

u
{2}
ij ∈ (0, 1) with u

{1}
ij < u

{2}
ij .

Proposition 5 If f(uij) = 0 has two solutions u
{1}
ij , u

{2}
ij (with u

{1}
ij < u

{2}
ij ),

JSPCM (Θ,U) exhibits a local minimum at the largest of them (u
{2}
ij ).

Proposition 6 JSPCM (Θ,U) exhibits its global minimum (with respect to uij)
at u∗

ij, where:

u∗
ij =

u
{2}
ij , if f(ûij) < 0 and u

{2}
ij >

(
λ(1−p)

γj

) 1
1−p

(≡ umin)

0, otherwise
(6)

Based on the above propositions, to determine u∗
ij , we solve f(uij) = 0 as

follows. First, we determine ûij and check whether f(ûij) > 0. If this is the case,
then f(uij) has no roots in [0, 1]. Note that, in this case, it is f(uij) > 0 for all
uij ∈ (0, 1], since f(ûij) > 0 (Fig. 1b). Thus, JSPCM is increasing with respect
to uij in (0, 1] (Fig. 1e). Consequently, in this case we set u∗

ij = 0, imposing
sparsity. In the rare case, where f(ûij) = 0, we set u∗

ij = 0, as ûij is the unique
root of f(uij) = 0 and f(uij) > 0 for uij ∈ (0, ûij) ∪ (ûij , 1]. If f(ûij) < 0, then
f(uij) = 0 has exactly two solutions that both lie in [0, 1] (see Figs. 1a, 1c).

In order to determine the largest of the solutions (u
{2}
ij ), we apply the bisection

method (e.g. [18]) in the range (ûij , 1], as u
{2}
ij is greater than ûij . The bisection

method is known to converge very rapidly to the optimum uij , that is, in our
case, to the largest of the two solutions of f(uij) = 0. If the obtained solution

u
{2}
ij satisfies the rightmost condition in the first branch of eq. (6), then we set

u∗
ij = u

{2}
ij (Fig. 1d) . Otherwise, u∗

ij is set to 0 (see Fig. 1f).
Concerning the adjustment of the number of clustersm(t) at the tth iteration,

we proceed as follows. Let label be a N -dimensional vector, whose ith element
is the index of the cluster which is most compatible with xi, that is the index j
for which uij(t) = maxr=1,...,m(t) uir(t). At each iteration of the algorithm, the
adjustment (reduction) of the number of clusters m(t) is achieved by examining,
for each cluster Cj , if its index j appears at least once in the vector label (i.e.
if there exists at least one vector xi that is most compatible with Cj). If this is
the case, Cj is preserved. Otherwise, Cj is eliminated and, thus, U and Θ are
updated accordingly. As a result, the current number of clusters m(t) is reduced.

Finally, concerning γj ’s and in contrast to the classical PCM where they
are kept fixed, in SAPCM they are given by eq. (2) and are adapted at each
iteration of the algorithm through the adaptation of the corresponding ηj ’s.
More specifically, we propose to compute the parameter ηj of a cluster Cj at
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ûij

(c) f(uij)

0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

J(
u ij)

u
ij

u∗

ij ≡ u
{2}
ijuminûij
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Fig. 1: In all plots the dashed parts of the graphs correspond to the interval
(0, umin), which is not accessible by the algorithm (see eq. (6)). (a) The shape
of function f(uij), when f(ûij) < 0 and the right-most condition of eq. (6) is
satisfied and (d) the corresponding shape of the cost function J(uij). (b) The
shape of function f(uij), when f(ûij) > 0 and (e) the corresponding shape of
J(uij). (c) The shape of function f(uij), when f(ûij) < 0 and the right-most
condition of eq. (6) is not satisfied and (f) the corresponding shape of J(uij).

each iteration, as the mean absolute deviation of the most compatible to cluster
Cj data vectors, i.e.,

ηj(t+ 1) =
1

nj(t)

∑
xi:uij(t)=maxr=1,...,m(t+1) uir(t)

∥xi − µj(t)∥, (7)

where nj(t) denotes the number of the data points xi that are most compatible
with Cj at iteration t and µj(t) the mean vector of these data points.

Selection of parameter λ: As it follows from the previous analysis, consider-
ing a specific data point xi and a cluster Cj , a necessary condition in order for
the equation f(uij) = 0 to have a solution is f(ûij) < 0, which, taking into ac-

count eq. (5) and solving with respect to λ gives λ <
γj

p(1−p) exp
(
−1− dij(1−p)

γj

)
.

Consequently, selecting

λ ≥ γj
p(1− p)

exp

(
−1− dij(1− p)

γj

)
, (8)



the degree of compatibility uij of a data point xi with a cluster Cj is set to
0, promoting sparsity. Aiming at retaining the smallest sized cluster, say Cq

(i.e., the cluster with γq = min
j=1,...,m

γj) until the termination of the algorithm

(provided of course that at least one representative has been initially placed
in it), a reasonable choice for λ would be the one for which uij becomes 0 for
points xi that lie at distance diq greater than γq from the representative θq. In
this way, θq will be less likely to be “attracted” by nearby larger clusters, aiding
it to remain in the region of the physical cluster where it was first placed. This
is so because the cluster representative will be affected only by the data points
that are very close to it (i.e., points with diq < γq = min

j=1,...,m
γj).

To this end, applying inequality (8) for dij and γj equal to γq = min
j=1,...,m

γj ,

we end up with λ ≥ γq

p(1−p)e2−p , where e is the base of natural logarithm. In

practice, we select λ as

λ = K

min
j=1,...,m

γj

p(1− p)e2−p
, (9)

where if we set K = 1, we allow non-zero uij ’s for points that lie at distance
around γq from θq. In most of the experiments of SAPCM, we take K = 0.1.

Comparison of APCM with state-of-the-art clustering algorithms In
this section, we compare the clustering performance of SAPCM with that of
the k-means, the FCM, the PCM [5], the UPC [8], the UPFC [19], the PFCM
[7], the SPCM-L1 [20], the APCM [10] and the SPCM [11] algorithms, which
all result from cost optimization schemes. For a fair comparison, the represen-
tatives θj ’s of all algorithms (except for SPCM-L1) are initialized based on the
FCM scheme and the parameters of each algorithm are first fine tuned. More-
over, in PCM, UPC, UPFC, PFCM and SPCM, duplicate clusters are removed
after their termination. In order to compare a clustering with the true data la-
bel information, we utilize (a) the Success Rate (SR) of each physical cluster
(SRcj , j = 1, ...,m), which measures the percentage of the points of each physi-
cal cluster that have been correctly labeled by each algorithm, (b) the mean of
the Euclidean distances (MD) between the true mean of each physical cluster
and its closest cluster representative obtained by each algorithm, (c) the number
of iterations (Iter) and (d) the total time required (Time) for the convergence
of each algorithm. Experiment: Consider a two-dimensional data set consist-
ing of N = 5300 points, where three clusters C1, C2 and C3 are formed. Each
cluster is modelled by a normal distribution. The means of the distributions are
c1 = [0.27, 7.99]T , c2 = [6.28, 1.49]T and c3 = [7.81, 3.76]T , respectively, while
their covariance matrices are set to 3 · I2, 0.5 · I2 and 0.01 · I2, respectively.
A number of 200 points are generated by the first distribution, 100 points are
generated by the second one and 5000 points are generated by the third one.
Note that C2 and C3 clusters are very close to each other and they have a big
difference in their variances (see Fig. 2a). Also, note the difference in the density
among the three clusters.
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Fig. 2: (a) The data set of Experiment. Clustering results for (b) k-means,mini =
3, (c) FCM,mini = 3, (d) PCM,mini = 5, (e) UPC,mini = 5, q = 1.5, (f) UPFC,
mini = 10, α = 5, β = 1, q = 2.2, n = 3, (g) PFCM, mini = 5, K = 1, α = 1,
β = 5, q = 1.5, n = 1.5, (h) SPCM-L1, λ = 15, q = 2 (i) APCM, mini = 5,
α = 0.3, (j) SPCM, mini = 5, and (k) SAPCM, mini = 10 and α = 0.15.

Table 1 shows the results of all algorithms for Experiment. Fig. 2b and Fig. 2c
show the clustering obtained using the k-means and FCM algorithms, respec-



Table 1: Performance of clustering algorithms for the data set of Experiment.
mini mfinal SRc1 SRc2 SRc3 MD Iter Time

k-means 3 3 51 0 100 3.4066 2 0.265
k-means 5 5 51 94 51.48 0.5369 20 0.202
FCM 3 3 51 0 100 3.3432 110 0.140
FCM 5 5 50.50 93 51.62 0.5537 86 0.218
PCM 5 2 100 0 100 0.9242 15 0.514
PCM 10 2 100 0 100 0.9254 18 1.185
UPC (q = 1.5) 5 4 50 95 100 0.4589 65 0.390
UPC (q = 1.2) 10 4 50 95 100 0.4480 89 0.910
UPFC (a = 5, b = 1, q = 2, n = 1.5) 5 4 50.50 96 100 0.4170 41 0.390
UPFC (a = 5, b = 1, q = 2.2, n = 3) 10 3 100 94 100 0.3601 190 2.940
PFCM (K = 1, a = 1, b = 5, q = 1.5, n = 1.5) 5 4 51.50 100 100 0.4573 38 0.380
PFCM (K = 1, a = 2, b = 1, q = 2, n = 1.2) 10 5 44 97 100 0.4011 60 0.880
SPCM-L1 (λ = 15, q = 2) - 2 76 0 100 1.1831 6 0.031
APCM (α = 0.3) 5 4 53 100 100 0.4469 73 0.390
APCM (α = 0.3) 10 4 52.50 100 100 0.4748 90 0.889
SPCM (K = 0.9) 5 2 100 0 100 0.9256 15 3.276
SPCM (K = 0.9) 10 2 100 0 100 0.9263 19 7.769
SAPCM (α = 0.18) 5 3 100 100 100 0.3222 91 13.40
SAPCM (α = 0.15) 10 3 100 100 100 0.3020 100 18.94

tively, both for mini = 3. Figs. 2d, 2e, 2f, 2g, 2h, 2i and 2j, depict the
performance of PCM, UPC, UPFC, PFCM, SPCM-L1, APCM and SPCM, re-
spectively, with their parameters chosen (after fine-tuning) as stated in the cap-
tion. In addition, the circles, centered at each θj and having radius

√
γj (as they

have been computed after the convergence of the algorithms), are also drawn.

As it can be deduced from Fig. 2 and Table. 1, even when the k-means and
the FCM are initialized with the (unknown in practice) true number of clusters
(m = 3), they fail to unravel the underlying clustering structure mainly due to
the big difference in the variances and densities between clusters. The classical
PCM also fails to detect the physical cluster 2, because it is located very close to
the densest physical cluster. The UPC algorithm has been fine tuned so that the
parameters γj ’s, which remain fixed during its execution and are the same for
all clusters, get small enough values, in order to identify cluster C2. However, it
splits the high variance/low density cluster C1 in two clusters. The same seems
to hold for the PFCM algorithm, after fine tuning of its several parameters. The
UPFC algorithm produces 3 clusters, at the cost of a computationally demanding
fine tuning of the (several) parameters it involves. The APCM algorithm also
splits the big variance cluster in two subclusters, failing to detect the underlying
clustering structure. On the other hand, SPCM identifies two clusters with high
accuracy with respect to the center of the actual clusters, but misses the third
one. Finally, as it is deduced from Table 1, the SAPCM algorithm manages to
identify all clusters, achieving the best SR and MD results and estimating very
accurately the true centers of the clusters, since it exhibits the minimum MD
among all algorithms.
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